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Exchange-Correlation Energy Density from Virial Theorem
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The virial of the exchange potential in density functional theory yields the exchange energy, but the virial of
the correlation potential does not yield the correlation energy. Via the adiabatic connection formula, we
define a hypercorrelated potential whose virial is exactly the correlation energy. This excttanggation

energy density isiniquelydetermined by the exchangeorrelation energy functiional. We calculate the

virial energy density both exactly and within several popular functionals, LDA, PBE, and BLYP, on several
atoms. The well-known differences between the potentials generated by these functionals is reflected in this
energy density. We speculate on how accurately the correlation energy can be estimated from knowledge of
the exact density, and on the construction of an energy density hybrid.

I. Introduction

Kohn—Shant spin density functional theory is a formally
exact treatment of electron correlation. For practical calculations
of ground-state energies, only the exchangerrelation energy
Exc[pws pg] Need be approximated as a functional of the spin 7
densities. The local spin density (LSD) approximatigjz®
has long been the mainstay of solid-state physics calculations,
but recently Koha-Sham theory has also become extremely
popular in quantum chemistfy This is due to the improvement

in bond energies from use of generalized gradient approxima- 1.8 He atom

tions (GGAs}~° and hybrid energy functional8; 14 which mix 2

a fraction of exact exchange with GGA exchangerrelation. 0 05 1t 15 2 25 3 35 4
Typical bond energy errors are about 30 kcal/mol in LSD, 8 "

kcal/mol within GGA, and only 23 kcal/mol in hybrid Figure 1. Exchange potential of the He atom (atomic units).
schemed?

However, these functional approximations are designed to 0
reproduce exchangeorrelation energies and differences in 02
these energies upon atomization, bond rearrangement, bond ’
stretching, etc. Other properties are not necessarily equally well 04
approximated. In particular, the exchanrgm®rrelationpotential % exact
is defined as the functional derivative of the exchange T 08
correlation energy with respect to the spin dengifr), = 08 S0
Vyeolr) = OE,JOp,(r) 1) 4
PBE He atom
Functionals which yield highly accurate energies often produce '1'20 05 1 15 2 25 3 35 4
potentials which differ markedly from the exact ores!8 r

In Figure 1, we plot the exact and approximate exchange Figure 2. Radial virial exchange energy density for the He atom
potentials for the He atom within several popular functional (atomic units).
approximations, evaluated on the very accurate density used
by Umrigar and Gonzé& We show only one representative have spurious extrema, and overall, lostrsethan their LSD

exchange GGA, the PerdevBurke—Ernzerhof (PBEY, as counterparts. So how do they produce better energies?
others (PW91:81920and Becke 89 look quite similar on this In the case of exchange, there is a simple answer. Levy and
scale. The functional approximations fail to captifé6the Perdev#® applied the virial to the interelectron Coulomb

correct—1/r behavior at large and the quadratic behavior at  repulsion and proved (for finite systems)
smallr. The GGA potentials in fact diverge as— 0, some

E,=— [ d& p(r)r-Vu(r) 2)

* To whom correspondence should be addressed. FAX: (609) 225-6506.

E-mail: kieron@crab.rutgers.edu. . . I .
* Present address: Department of Chemistry and Biochemistry, University IN Figure 2, we plot the radial contribution to this integral. We
of Delaware, Newark, DE 19716. use the exact density, and the approximate potentials evaluated

S1089-5639(98)00950-5 CCC: $15.00 © 1998 American Chemical Society
Published on Web 06/05/1998



4912 J. Phys. Chem. A, Vol. 102, No. 25, 1998 Cruz et al.

on that density. The approximate curves all look similar to the constructed whose viridk the correlation energy. This may
exact curve, all being negative everywhere. The errors in the be viewed as a recasting of the line integral formula of van
approximate potentials near= 0 and ag — o are hidden by Leeuwen and Baerentfsin terms of the coupling constant,
the 4rr3 p(r) factor in the integrand of eq 2. The LSD curve rather than a scaling of the density.
even mirrors the 10% underestimate of the magnitude of the In section 3, we calculate this hypercorrelated potential and
exchange energy, although the integrated PBE curve containsts virial energy density for the He atom, within several popular
some “cancelation of errors,” as its error is only about 1%.  approximations. Unfortunately, we do not compare these curves
In a slightly different context, we point out the well-known  with the exact virial correlation energy density, because we only
difficulty of defining an exchangecorrelation energy density  have the exact potential at a single valueto{l = 1, the
that can be used as a test of approximate exchaogeelation physical value). This drawback can be side-stepped by instead
energy functionals. A GGA exchangeorrelation energy is returning to eq 5. This defines a virial energy densityEor+-

usually written as an integral over an exchangerrelation T., which can be extracted from a wave function calculation,
energy density: and which can be compared with functional approximations.
In fact, as we show, this provides a much tougher test for current
GCGA = f d3reXGCGA(pa, P Voo Vop) () functional_s. _ _ _ o
_ In the final section, we discuss two underlying motivations
with LSD being a special case, usiq‘ﬁ”(pq, pp), the€XChange- behind this study. The first is to achieve the most accurate
correlation energy density of a uniform gd€> However, answer to the question: Given the exact density, how well can

adding any quantity which integrates to zero to the energy we calculate the exact energy?For the second note that, as
density does not change the corresponding energy, s@that mentioned above, hybrid schemes which mix exact exchange
does not have a single unique definition. Thus, there is an with GGA exchangecorrelation have significantly reduced
infinite number of choices for the energy density of a given bond energy error¥.38 Recently, these schemes have been
energy functional, and use of a given approximate energy (partially) justified by nonempirical procedures, applied to
functional does notimply a specific choice of approximate atomization energie¥1* However, these procedures are
energy density. To illustrate this essential point, consider the flawed because they lead to different answers if applied to total
local density approximation for exchange. The energy density energies rather than energy differengeg\ hybrid of the energy
is usually written ase!™(p(r)), but for finite systems, may density would overcome these flaws. We speculate on the
equally well be written as-p(r)r-Vo ™ (o(r)), according to eq  Possibility of such a scheme.
2. Both choices yieldE; *[p], and use of LDA exchange does
not imply either one of them. Similarly, various popular GGAs
are derived in different ways, so that the corresponding energy  Our construction of a virial relation for the correlation energy
densities may look quite different, while yielding similar begins with the generalization to arbitrary coupling constant of
energies. There are also several different ways to extract anthe constrained search definitfdr!of the universal functional
exact energy density from a wave function calculation, usually of Hohenberg and Kohf?
based on the exchangeorrelation holé®~32 Unfortunately, o
there is no way to construct these specific energy densities F,[n] = minl¥,|T + AV J¥,0 (6)
directly from a given approximation . o, ps], and no reason Wi
why these definitions should correspond to a particular choice
in eq 3 above. For example, the deviation of the PW91l
exchange energy density involves an integration by fasts,
that the standard form for this energy densityd the energy
density of the exchange hole.

Equation 2 therefore has another important use. Following
Engel and Voskd# we may define a “virial” exchange energy
density,

. Virial Exchange —Correlation Energy Density

whereT is the kinetic energy operatdvecis the interelectronic
Coulomb repulson operator, and the minimization is over all
wave functions yielding the given densityr). The coupling
constantl may be chosen to have any nonnegative value. For
A =1, we recover the physical wavefunction and energies, for
A = 0 we get the KohaSham wave function, in which just the
kinetic energy is minimized, while fat — c we achieve the
extreme strong coupling limit, in which just the potential energy

—__ . is minimized. We can then define the exchangerrelation
&) p(r)r-Vuy(r) ) energy as a function of via23

such thatE, = J d® ey(r). The significance of this definition i

is that the corresponding energy densityisquelydetermined Ee=F, —Ts—4U (7)

by Expa. pg), Via egqs 1 and 2. Thus all functional approxima- . .

tions may be meaningfully compared with the exact curve, as Note that our definition differs from that of ref 23 by a factor

in Figure 2. of 1. Then

The purpose of the current work is to extend these ideas into 1
the murky realm of correlation. This is not as straightforward 1 f” i 9B ®)
as might be hoped, as the corresponding virial for the correlation ¢ 0 oA
potential ig3

where
E.+ T.=— [ d p(r)r-Vo,(r) (5) .
Be - _

where T, is the correlation contribution to the kinetic energy. a Bxcs = Veer = U ©)
Thus there is no simple route directly from the correlation
potential to the correlation enerdy. However, in section II, since thei-dependence of the wave function in eq 6 does not

we show that, if the correlation potential at all adiabatic coupling contribute to the first derivative, by virtue of the variational
constantst is known, then a hypercorrelated potential may be principle.
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Next, we state the virial theorem at arbitrdryeqs 3 and 40
of ref 23:

Efo+ To=— [ & p(r)r-vojy(r) (10)

where

Ve = OE,JOp(r) (11)
and T: = W,/ T|W,0— Ts is the kinetic contribution to the
correlation energy at coupling constadnt At 1 = 1, this is eq
5 of the introduction.

However,T. is simply related to a coupling-constant deriva-
tive of the correlation energy (Bass’ relatfgn

dE?
T =E - Aa" (12)
yielding
dE;
2B, — dg = = [ r p(r)r-Vus(r) (13)

This is a first-order differential equation iA. Solving by
elementary means, we find
A r ! I
El. =7 ﬁc d [ dr p(r)r-voga® (14)
wherel. is a constant yet to be determined. Nd&y;,; should
tend to a negative constant s~ «,** which impliesi; = .
Thus we come to a virial for the exchangeorrelation energy:

Eye=—J & p(r)r- Vi (r) (15)

where

wo= 22 [y (16)

j‘,3 XC

Note that the exchange contribution to this integral contributes

in a simple fashion:

vi(r) = A vy(r) 17)

yielding, correctly,

B = iE,

Note also that a£ = 1, we have a virial which immediately
yields the exchangecorrelation energy:

(18)

Exe=—J A p(r)r-Vo,r) (19)
where
Blr) = ff%vic(r) (20)

We call 9y the hypercorrelated potential, as it includes
contributions fromi > 1, at which the system is more strongly
correlated than et = 1. We define a correlation energy density:

&(r) = —p(r)r-Vi,(r) (21)

such thate; = f d® e((r), ande(r) is uniquely determined by
EJn], via egs 20, 11, and 7.
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This result can be simply related to the line integral of van
Leeuwen and Baerend$:

E.[p,] = ﬁf'% S e (7] @ot) +r-9p(0) - @22)
where

p,(r) = y°p(yr) (23)

is the uniformly scaled density. We write y = 1/4, and use

the fundamental scaling relationship for exchangerrela-
tion:23

Erdel = A°E,dpy;] (24)

which shows that changing the coupling constant is simply

related to a uniform scaling of the density. Functional dif-
ferentiation yields

Uil pl(r) = 2% v, py,](Ar)

Using eq 24 on the left of eq 22 and eq 25 on the right yields

(25)

Bl =42 [* % [ & AnI(r) (3e(r) + 1-Vp(r))  (26)

which, when integrated by parts ouwgrreproduces eq 15. The
scaling relation eq 25 provides an alternative expression for the
hypercorrelated potential:

B lol(r) = ﬁfd;yvxc[py](r/y) 27)

The earlier work by Engel and Vosko for exchaffgalso
differed from ours by an integration by parts. We prefer the
form of eq 15, in which constants in(r) play no role.

We may also write eq 15 in terms of the potential contribution
to vx(r), defined as

Vo) = OBy, [/ Op(r) = duy /ol (28)
Writing v}, = /& dA’ vye, in the definition of’,, eq 16, and
swapping the order of thg& integrals, produces
~ A o dA’
vo=1, ( Jo Ve + 247 ] 2 Ve w) (29)

We recognize the first potential on the right-hand side as simply
v’ while we define the second as

Xc!

1 w A’
Uye = 2'2 L/:l F Uye it (30)
Then, atl = 1, eq 29 reduces to the simple result
ﬁxc = l/Z(ch + ﬁ)«) (31)

Moreover, if we take the virial of both sides of this equation,
and using eq 5, we find a familiar restt

Eo= "2 (Exe + Td + Exizt) (32)

We can also extract an energy density T by simply
subtracting eq 19 from eq 5, to find
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0.05

T, = f d&r t(r) \pm
=— [ &rr(r)-V(v, - 5(r) (33) 0
Finally, although all our formulas were presented as func- . 0es LyP
tionals of the density, they may easily be generalized to spin- § LSD
density functionals, using 0.1
EctTe=—[d" 5 [, VoeM0 (34 015
o=ap He atom
lll. Functional Approximations '0'20 05 1 15 2 25 3 35 4

r

Energies relevant to this study are given in Table 1. Allwere ) ) o
calculated on the highly accurate densities of Umrigar, and most Figure 3. Correlation potential for the He atom (atomic units).
of these energies appear in his work with otH&rS. Elsewhere, 0.05
we will present calculations for the Hooke’s atom for several
different frequencie4! Note that, in powers of the coupling
constantE, is the first order il, E; andT. are second order,
while E; + T is third order*® Hence the diminishing Lyp
magnitudes of the energies. Note also some trends in the GGA 005 §D
energies. The PBE simplification of PW9L1 is typically not as
accurate as PW91 for total correlation energies of atoms and 0.1
molecules, due to slight differences with PW91 in the d8re.

Furthermore, while LYP is always slightly better than PW91 -0.15
for E¢, LYP always underestimatdg, sometimes significantly. He atom
This implies that LYP contains stronger static correlation than 0.2
PW91, which may mimic the static correlation in atomization 0 05 1 15 2 25 3 35 ¢4

energied? where LYP produces noticeably better results. r

Before we look in detail at the correlation potentials and Figure 4. Hypercorrelated potentialj. of eq 20, for the He atom
energy densities, we first reconsider the exchange case, adatomic units).
detailed in Figures 1 and 2. In particular, we note the failurg TABLE 1: Energy Components in hartrees for Several
of the Becke exchange GGA to reproduce the asymptotic Atoms, Evaluated on Exact Densitie18
behavior of the exchange potentialras- «, namely—1/r. This

Be(r)

PBE

GGA was designed to yield a correct energy density, but not energy exact LSD " PWo1 PBE BLYP
- R 4 e
Lhe virial energy density discussed here. If the functional had E, _1025 —0883 —1016 —1013 —1.025
een designed to yield the correct potential, then it would also E, 0042 -0112 -0046 —0042 —0.044
have gotten the correct virial energy densityFor all figures, T 0.037 0.068 0.038 0.038 0.034
the PW91 potentials (not shown) are almost identical to the PBE E.+ T, —-0.005 —0.044 —0.008 —0.004 —0.010
potentials, except for the small oscillations which were removed Be
in the derivation of PBE. However, in the energy densities, E, —2674 —2321 —2654 —2.645 —2.667
these oscillations lead to wild peaks and valleys, whose net effect Ec -0.096 —-0.225 —0.095 —0.086 —0.096
on the area under the curve is negligible. Te 0.073 0.139 0.074 0.072 0.062
Next we turn to correlation. In Figure 3, we plot both the Be+T. —0023 -—0086 -0021 -—0.014 —0.034
exact correlation potential and the functional approximations Ne
to it. We now include also the Leerang—Parr correlation Ex —12.085 -11.021 -12.102 -12.054 -12.125

. . - —0.393 -0.742 —-0.381 —0.350 —0.383
6
potential (LYP)® We find that none of the functionals produce 0.328 0.495 0.312 0.305 0.285

potentials which look like the exact one, which becomes positive Ez +T. ~0.065 —0.247 —0.069 —0.044 —0.099
at larger and tends to a finite negative value s> 0. The
LSD curve is everywhere negative. The GGA curves all have  |n Figure 4, we plot the hypercorrelated potentials and note
positive divergences at= 0, and become negative for most the similarities to Figure 3. The effect of hypercorrelation is
values ofr. It has even been pointed out that the GGA potentials clear. Many of the features visible in the curves become more
would look better upside dowht. We return to this point below. pronounced_ |nteresting|y, the PBE and LYP curves become
To contruct the hypercorrelated potential, we extract the more similar.
coupling-constant dependence of the potential via eq 25. Any  From the curves in Figure 4, we construct the corresponding
program to find the potential within a given functional ap- radial virial energy densities; 47r3p(r)(dd/dr), and plot them
proximation can be modified to scale the density and calculate in Figure 5. The net area between these curves and the axis
vﬁ. (A little care must be taken in the strongly correlated limit yields the correlation energy, within a given functional ap-
(A — o) where, e.g.,vtSD“1 ~ O(2%?).) Integration of this proximation. In principle, we should use the self-consistent
potential as a function of according to eq 31 then yields,. densities calculated within each functional approximation in
Unfortunately, we do not plot an exact curve here, as the order for the virial theorem to apply. In practice, we have used
A-dependence of the correlation potential has not yet beenthe exact density everywhere, and have noticed no difference
calculated. While exact correlation potentials can be found from between, for examplés: and the virial of the hypercorrelated
the exact density for any finite syste20-54.15.552%ca|culation potential, to the number of digits quoted in Table 1.
of the exacti-dependence is only now becoming practi@al. First note the greater structure of the GGA curves relative to
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0.1 0.1
PBE
0.05 PBE = oos|'
(=]
i AN exact
2 o\ R S N
1R ¥ \\ v e
& LYR e e
~+ ~— . v
-0.05 -0.05 Lso -
LSD, He atom He atom
-0.1 -0.1
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
T r
Figure 5. Radial virial correlation energy density, extracted from the Figure 6. Radial virial correlation plus kinetic-correlation energy
hypercorrelated potential, for the He atom (atomic units). density, extracted from the correlation potential, for the He atom (atomic
units).
that of LSD. Each of the GGA correlation potentials contains
at least one extremum at a finite valuergfin common with 01
the exact curve. This implies a zero in the corresponding energy LSD

density and so a change in sign of that density. There is 0.05
therefore a large cancelation of errors within the correlation ' PBE
energy integral for the GGAs. Presumably, the exact curve
shares this feature (for further evidence, see below). But the 0 Lyp
LSD correlation potential is monotonic, so that the LSD energy \/
density has no cancelation of errors. This is another view of
the characteristic LSD overestimate of the correlation energy. -0.05
We can derive a simple expression for the virial exchange
correlation energy density in the special case of the local
approximation. If we write '0'10 05 1 15 2 25 3 35 4
,

I‘SD[,O] = f dr eun'f(p(r)) (35) Figure 7. Radial virial kinetic-correlation energy density for the He
atom (atomic units).

4mrite(r)

where €27(n) is the accurately know56:57 exchange-cor-

relation energy density of a uniform gas. Taking the functional
derivative, we find

for the He and Be series has been accurately calculated using

a standard configuration interaction progréffor the Hooke's

atom using approximate density scaling, and quantum Monte

LSD(I,) = unlf)/dp (36) \C/:;rlp calculatipnszhave been performed on Si and sinusoidally
ying potentials:

However, we can avoid this difficulty by returning to eq 5.
Here we have a correlation virial energy density whieim be
found fromW,—,, but integrates up t&. + T, rather thark;
itself. Since this quantity is much less accurately predicted by

The virial energy density is given by eq 19. Using eq 25 to
rewrite it in terms of the scaled density, we find

_ LSD 3 . : . .
= —p(r)r- Vfl = Uy (p(r)I27) (37) density functionals, this produces a more stringent test than the
virial for E¢. In Figure 6, we plot the radial energy density for
Writing i = n/A3, we find the exact curve and the approximate ones. The transformation

from Figure 5 to Figure 6 is similar to that from Figure 3 to

=_Y (r)r- vfp(r) dp LSD( ) Figure 4 in reverse. The strength of the features is weakened.
exc 3P Most importantly, the exact and GGA curves have almost perfect
cancelation between their positive and negative contributions,

= —1/3(r-Vp)vxc(p) (38) yielding very similar energies. But, just as in the case for the

potential, the GGA energy densities differ markedly from the

This simple result is only true for a local functional. The LSD exact ones point-by-point.
virial energy density depends on both the local density and its  Again we see the resolution of the paradox of the apparently
gradient. We also used it as a check on @étintegrations, worse GGA potential curve, but better GGA energy. The small
calculating the LSD potential from either eq 20 or eq 38. oscillation in the PBE correlation potential curve aroune

Figures 4 and 5 suffer noticeably from the lack of an exact 1.0 in Figure 3 leads to a change in sign of its energy density,
curve to compare the density functional approximations with. producing a large cancelation of errors in the integral. The
This is because, although our definition of the virial correlation smoother, better looking LSD potential has no such feature.
energy density is uniquely determined by the correlation energy SinceE; + T. is a very small number, this cancellation is vital
functional, one needs to know that functional different coupling and is included in GGA, but missed by LSD, leading to an error
constants, or equivalently, for scaled densities. A traditional which is almost 10 times larger (see Table 1).
wavefunction calculation only product—;. Thus we cannot Finally, we plot the correlation contribution to the kinetic
calculate the exact curve to make the comparison with. Until energy density of eq 33 in Figure 7. We see the significant
recently, the fulll-dependence was known only for the uniform difference between the overestimate of LDA due its monoto-
gas. Now thél-dependence of the exchangmrrelation energy nicity, just as fork¢ in Figure 5. However, we also see a large
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PBE
LSD

act

-p(r)dvg/dz

He atom

- - N

5 -1 0.5 0

Z
Figure 8. Change in He atom virial exchange energy density when
origin is shifted by 1 (atomic units).
difference between the PBE and LYP curves, leading to the
underestimate of; by LYP mentioned earlier. These curves
can be compared to Figure la of ref 59, but there the exac
te(r) is defined in terms of the difference in kinetic energy
density of the physical and KohiSham wave functions, and
the approximatety(r) extracted by scaling the traditional
correlation energy density of eq 3, rather than using the virial
definition of eq 33.

05 1 1.5

IV. Uniqueness and Application to Molecules

The virial of the hypercorrelated potential yields the exact
exchange-correlation energy, thereby defining an exchange
correlation energy density which is uniquely determined by the
exchange-correlation energy functional. However, this choice
of energy density is itself by no means unique. A simple way
to see this is to change the origin in eq 19. The exchange
correlation energy does not change, since

J & p(r) Vi (r) =0 (39)

but the corresponding energy density does. To illustrate this,
imagine shifting the origin one atomic unit along tkexis,

Cruz et al.

function of coupling constant) and therefore by the correlation
energy functional itself. We find that neither the local density
approximation nor any popular GGA approximate this energy
density point-by-poin.

We can apply this study to the question of how well the
ground-state energy can be estimagiden the exact density,
without recourse to solving an interacting problem. For the spin-
unpolarized two-electron problem, the answer is thagn be
deduced exactly. We writé = ¢ + E;, wheree is the Kohn-
Sham eigenvalue, deducible from the decay of the dePity,
while E; is the ground-state energy of the remaining one-electron
ion. More generally, both the exchange and correlation
potentials can be found exactly from the den§ityThus if one
can deduce the hypercorrelated potential from the correlation
potential, then the problem is solved. We are currently working
on schemes to estimate the hypercorrelated potential. Note that
even an exact solution to this problem does not provide an exact

tground-state energy functional, since use of the virial theorem

renders the energy nonvariational.

This might also be extended to estimating the hypercorrelated
potential from the exchange potential alone, as might be found
in an optimized effective potential calculation (OEP) using, for
example, the KLI approximatiof?. This suggests the possibility
of an exchange-correlation energy density hybrid of exact
exchange with GGA exchangeorrelation. Recently, the
hybrid idea, which reduces atomization energy errors by a factor
of 2-3, has been derived in a parameter-free fasholt.
Unfortunately, these schemes are all applied to the energy
difference between atoms and molecules, rather than on the
energies themselves, so losing the uniqueness of the definition
of the total energ§® However, any scheme which mixed energy
densitieson a pointwise basis would not suffer from such a
defect, by construction. This was the original motivation behind
the current work. Unfortunately, since the current functionals
do not produce energy densities similar to the exact quantities,
it is difficult to see how to implement such a hybrid scheme,
which would be of the form

away from the nuclear center. Then, for example, the exchange

energy density of eq 4 changes by an amount

dv,
A& () = —p(r) ()

This quantity is plotted for the He atom along tkexis in

(40)

€N =ae, ) — XM + &7 (41)
wherea(r) would be determined by some nonempirical recipe.
In the case of atomization energies, the errors in the GGA

functionals are of definite sign and natffreand can be

Figure 8. It integrates to zero, but has a pronounced structureynderstood in terms of general chemical argum&ntBhus they

as a function ofr. This will be particularly important when
calculating these energy densities for molecules. If the origin

can be repaired by hybrid recipes which account for the#.
For the energy density, we are still searching for an understand-

is chosen on one nucleus, the contribution at another nucleusing of these erroré without which it is unclear how best to

will pick up a term similar to that of Figure 8, but which will
be slightly asymmetric, due to the bonding. Thus this contribu-
tion cannot be ignored, as it does not integrate to zero.

This illustrates an important point in the interpretation of the
energy densities defined in this work. Itis unclear what physical

proceed.
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densities at a point in the system. They are highly nonfocal

functionals of the density, as evinced by the differences betweengatarences and Notes

the exact curves and the LDA curves. Thus they do not yield
chemical insight into the nature of bond forma#i6r#® nor are
they close to “local®® On the other hand, one can choasg

origin for the purposes described here (i.e., comparison between

approximate and exact functionals).

V. Conclusions

We have shown how to construct a correlation energy density
which is uniquely determined by the correlation potential (as a
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