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The virial of the exchange potential in density functional theory yields the exchange energy, but the virial of
the correlation potential does not yield the correlation energy. Via the adiabatic connection formula, we
define a hypercorrelated potential whose virial is exactly the correlation energy. This exchange-correlation
energy density isuniquelydetermined by the exchange-correlation energy functiional. We calculate the
virial energy density both exactly and within several popular functionals, LDA, PBE, and BLYP, on several
atoms. The well-known differences between the potentials generated by these functionals is reflected in this
energy density. We speculate on how accurately the correlation energy can be estimated from knowledge of
the exact density, and on the construction of an energy density hybrid.

I. Introduction

Kohn-Sham1 spin density functional theory is a formally
exact treatment of electron correlation. For practical calculations
of ground-state energies, only the exchange-correlation energy
Exc[FR, Fâ] need be approximated as a functional of the spin
densities. The local spin density (LSD) approximationExc

LSD

has long been the mainstay of solid-state physics calculations,2

but recently Kohn-Sham theory has also become extremely
popular in quantum chemistry.3 This is due to the improvement
in bond energies from use of generalized gradient approxima-
tions (GGAs)4-9 and hybrid energy functionals,10-14which mix
a fraction of exact exchange with GGA exchange-correlation.
Typical bond energy errors are about 30 kcal/mol in LSD, 8
kcal/mol within GGA, and only 2-3 kcal/mol in hybrid
schemes.10

However, these functional approximations are designed to
reproduce exchange-correlation energies and differences in
these energies upon atomization, bond rearrangement, bond
stretching, etc. Other properties are not necessarily equally well
approximated. In particular, the exchange-correlationpotential
is defined as the functional derivative of the exchange-
correlation energy with respect to the spin densityFσ(r ),

Functionals which yield highly accurate energies often produce
potentials which differ markedly from the exact ones.15-18

In Figure 1, we plot the exact and approximate exchange
potentials for the He atom within several popular functional
approximations, evaluated on the very accurate density used
by Umrigar and Gonze.15 We show only one representative
exchange GGA, the Perdew-Burke-Ernzerhof (PBE),9 as
others (PW917,8,19,20and Becke 885) look quite similar on this
scale. The functional approximations fail to capture21,22,16the
correct-1/r behavior at larger and the quadratic behavior at
small r. The GGA potentials in fact diverge asr f 0, some

have spurious extrema, and overall, lookworsethan their LSD
counterparts. So how do they produce better energies?
In the case of exchange, there is a simple answer. Levy and

Perdew23 applied the virial to the interelectron Coulomb
repulsion and proved (for finite systems)

In Figure 2, we plot the radial contribution to this integral. We
use the exact density, and the approximate potentials evaluated
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Figure 1. Exchange potential of the He atom (atomic units).

Figure 2. Radial virial exchange energy density for the He atom
(atomic units).

Ex ) -∫ d3r F(r )r ‚∇υx(r ) (2)

υxc,σ(r ) ) δExc/δFσ(r ) (1)
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on that density. The approximate curves all look similar to the
exact curve, all being negative everywhere. The errors in the
approximate potentials nearr ) 0 and asr f ∞ are hidden by
the 4πr3 F(r) factor in the integrand of eq 2. The LSD curve
even mirrors the 10% underestimate of the magnitude of the
exchange energy, although the integrated PBE curve contains
some “cancelation of errors,” as its error is only about 1%.
In a slightly different context, we point out the well-known

difficulty of defining an exchange-correlation energy density
that can be used as a test of approximate exchange-correlation
energy functionals. A GGA exchange-correlation energy is
usually written as an integral over an exchange-correlation
energy density:

with LSD being a special case, usingexc
unif

(FR, Fâ), theexchange-
correlation energy density of a uniform gas.24,25 However,
adding any quantity which integrates to zero to the energy
density does not change the corresponding energy, so thatexc
does not have a single unique definition. Thus, there is an
infinite number of choices for the energy density of a given
energy functional, and use of a given approximate energy
functional does notimply a specific choice of approximate
energy density. To illustrate this essential point, consider the
local density approximation for exchange. The energy density
is usually written asex

unif(F(r )), but for finite systems, may
equally well be written as-F(r )r ‚∇υx

unif(F(r )), according to eq
2. Both choices yieldEx

LDA[F], and use of LDA exchange does
not imply either one of them. Similarly, various popular GGAs
are derived in different ways, so that the corresponding energy
densities may look quite different, while yielding similar
energies. There are also several different ways to extract an
exact energy density from a wave function calculation, usually
based on the exchange-correlation hole.26-33 Unfortunately,
there is no way to construct these specific energy densities
directly from a given approximation toExc[FR, Fâ], and no reason
why these definitions should correspond to a particular choice
in eq 3 above. For example, the deviation of the PW91
exchange energy density involves an integration by parts,9 so
that the standard form for this energy density isnot the energy
density of the exchange hole.
Equation 2 therefore has another important use. Following

Engel and Vosko,34 we may define a “virial” exchange energy
density,

such thatEx ) ∫ d3r ex(r ). The significance of this definition
is that the corresponding energy density isuniquelydetermined
by Ex[FR, Fâ], via eqs 1 and 2. Thus all functional approxima-
tions may be meaningfully compared with the exact curve, as
in Figure 2.
The purpose of the current work is to extend these ideas into

the murky realm of correlation. This is not as straightforward
as might be hoped, as the corresponding virial for the correlation
potential is23

whereTc is the correlation contribution to the kinetic energy.
Thus there is no simple route directly from the correlation
potential to the correlation energy.35 However, in section II,
we show that, if the correlation potential at all adiabatic coupling
constantsλ is known, then a hypercorrelated potential may be

constructed whose virialis the correlation energy. This may
be viewed as a recasting of the line integral formula of van
Leeuwen and Baerends36 in terms of the coupling constant,
rather than a scaling of the density.
In section 3, we calculate this hypercorrelated potential and

its virial energy density for the He atom, within several popular
approximations. Unfortunately, we do not compare these curves
with the exact virial correlation energy density, because we only
have the exact potential at a single value ofλ (λ ) 1, the
physical value). This drawback can be side-stepped by instead
returning to eq 5. This defines a virial energy density forEc +
Tc, which can be extracted from a wave function calculation,
and which can be compared with functional approximations.
In fact, as we show, this provides a much tougher test for current
functionals.
In the final section, we discuss two underlying motivations

behind this study. The first is to achieve the most accurate
answer to the question: Given the exact density, how well can
we calculate the exact energy?37 For the second note that, as
mentioned above, hybrid schemes which mix exact exchange
with GGA exchange-correlation have significantly reduced
bond energy errors.10,38 Recently, these schemes have been
(partially) justified by nonempirical procedures, applied to
atomization energies.12-14 However, these procedures are
flawed because they lead to different answers if applied to total
energies rather than energy differences.39 A hybrid of the energy
density would overcome these flaws. We speculate on the
possibility of such a scheme.

II. Virial Exchange-Correlation Energy Density

Our construction of a virial relation for the correlation energy
begins with the generalization to arbitrary coupling constant of
the constrained search definition40,41of the universal functional
of Hohenberg and Kohn:42

whereT̂ is the kinetic energy operator,V̂ee is the interelectronic
Coulomb repulson operator, and the minimization is over all
wave functions yielding the given densityF(r ). The coupling
constantλ may be chosen to have any nonnegative value. For
λ ) 1, we recover the physical wavefunction and energies, for
λ ) 0 we get the Kohn-Sham wave function, in which just the
kinetic energy is minimized, while forλ f ∞ we achieve the
extreme strong coupling limit, in which just the potential energy
is minimized. We can then define the exchange-correlation
energy as a function ofλ via23

Note that our definition differs from that of ref 23 by a factor
of λ. Then

where

since theλ-dependence of the wave function in eq 6 does not
contribute to the first derivative, by virtue of the variational
principle.

Exc
GGA )∫ d3rexcGGA(FR, Fâ, ∇FR, ∇Fâ) (3)

ex(r ) ) -F(r )r ‚∇υx(r ) (4)

Ec + Tc ) -∫ d3r F(r )r ‚∇υc(r ) (5)

Fλ[n] ) min
Ψλfn

〈Ψλ|T̂+ λV̂ee|Ψλ〉 (6)

Exc
λ ) Fλ - Ts - λU (7)

Exc
λ′ )∫0λ′

dλ
∂Exc

λ

∂λ
(8)

∂Exc
λ

∂λ
) Exc,λ ) Vee,λ - U (9)
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Next, we state the virial theorem at arbitraryλ, eqs 3 and 40
of ref 23:

where

and Tc
λ ) 〈Ψλ|T̂|Ψλ〉 - Ts is the kinetic contribution to the

correlation energy at coupling constantλ. At λ ) 1, this is eq
5 of the introduction.
However,Tc is simply related to a coupling-constant deriva-

tive of the correlation energy (Bass’ relation43):

yielding

This is a first-order differential equation inλ. Solving by
elementary means, we find

whereλc is a constant yet to be determined. Now,Exc,λ should
tend to a negative constant asλ f ∞,44 which impliesλc ) ∞.
Thus we come to a virial for the exchange-correlation energy:

where

Note that the exchange contribution to this integral contributes
in a simple fashion:

yielding, correctly,

Note also that atλ ) 1, we have a virial which immediately
yields the exchange-correlation energy:

where

We call υ̃xc the hypercorrelated potential, as it includes
contributions fromλ > 1, at which the system is more strongly
correlated than atλ ) 1. We define a correlation energy density:

such thatEc ) ∫ d3r ec(r ), andec(r ) is uniquely determined by
Ec[n], via eqs 20, 11, and 7.

This result can be simply related to the line integral of van
Leeuwen and Baerends:36

where

is the uniformly scaled density.45 We writeγ ) 1/λ, and use
the fundamental scaling relationship for exchange-correla-
tion:23

which shows that changing the coupling constant is simply
related to a uniform scaling of the density. Functional dif-
ferentiation yields

Using eq 24 on the left of eq 22 and eq 25 on the right yields

which, when integrated by parts overr , reproduces eq 15. The
scaling relation eq 25 provides an alternative expression for the
hypercorrelated potential:

The earlier work by Engel and Vosko for exchange34 also
differed from ours by an integration by parts. We prefer the
form of eq 15, in which constants inυxc(r ) play no role.
We may also write eq 15 in terms of the potential contribution

to υxc(r ), defined as

Writing υxc
λ ) ∫0λ dλ′ υxc,λ′ in the definition ofυ̃xc

λ , eq 16, and
swapping the order of theλ integrals, produces

We recognize the first potential on the right-hand side as simply
υxc

λ , while we define the second as

Then, atλ ) 1, eq 29 reduces to the simple result

Moreover, if we take the virial of both sides of this equation,
and using eq 5, we find a familiar result46

We can also extract an energy density forTc, by simply
subtracting eq 19 from eq 5, to find

Exc
λ + Tc

λ ) -∫ d3r F(r )r ‚∇υxc
λ (r ) (10)

υxc
λ ) δExc

λ /δF(r ) (11)

Tc
λ ) Ec

λ - λ
dEc

λ

dλ
(12)

2Exc
λ - λ

dExc
λ

dλ
) -∫ d3r F(r )r ‚∇υxc

λ (r ) (13)

Exc
λ ) λ2∫λcλ dλ′∫ d3r F(r )r ‚∇υxc

λ′ /λ′3 (14)

Exc
λ ) -∫ d3r F(r )r ‚∇υ̃xc

λ (r ) (15)

υ̃xc
λ ) λ2∫λ∞ dλ′

λ′3
υxc

λ′ (16)

υx
λ(r ) ) λ υx(r ) (17)

Ex
λ ) λEx (18)

Exc ) -∫ d3r F(r )r ‚∇υ̃xc(r ) (19)

υ̃xc(r ) )∫1∞ dλ
λ3

υxc
λ (r ) (20)

ec(r ) ) -F(r )r ‚∇υ̃xc(r ) (21)

Exc[Fγ′] )∫0γ′ dγ
γ ∫ d3r υxc[Fγ] (rγ) (3F(r ) + r ‚∇F(r )) (22)

Fγ(r ) ) γ3F(γr ) (23)

Exc
λ [F] ) λ2Exc[F1/λ] (24)

υxc
λ [F](r ) ) λ2 υxc[F1/λ](λr ) (25)

Exc
λ [n] ) λ2∫λ′

∞ dλ′
λ′3
∫ d3r υxc

λ′ [n](r ) (3F(r ) + r ‚∇F(r )) (26)

υ̃xc[F](r ) )∫01 dγ
γ

υxc[Fγ](r /γ) (27)

υxc,λ(r ) ) δExc,λ[F]/δF(r ) ) dυxc
λ /dλ (28)

υ̃xc
λ ) 1/2 (∫0λ υxc,λ′ + λ2∫λ∞ dλ′

λ′2
υxc,λ′) (29)

υjxc
λ ) λ2∫λ∞ dλ′

λ′2
υxc,λ′ (30)

υ̃xc ) 1/2(υxc + υjxc) (31)

Exc ) 1/2 ([Exc + Tc] + Exc,λ)1) (32)
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Finally, although all our formulas were presented as func-
tionals of the density, they may easily be generalized to spin-
density functionals, using

III. Functional Approximations

Energies relevant to this study are given in Table 1. All were
calculated on the highly accurate densities of Umrigar, and most
of these energies appear in his work with others.15,18 Elsewhere,
we will present calculations for the Hooke’s atom for several
different frequencies.47 Note that, in powers of the coupling
constant,Ex is the first order inλ, Ec andTc are second order,
while Ec + Tc is third order.45 Hence the diminishing
magnitudes of the energies. Note also some trends in the GGA
energies. The PBE simplification of PW91 is typically not as
accurate as PW91 for total correlation energies of atoms and
molecules, due to slight differences with PW91 in the core.48

Furthermore, while LYP is always slightly better than PW91
for Ec, LYP always underestimatesTc, sometimes significantly.
This implies that LYP contains stronger static correlation than
PW91, which may mimic the static correlation in atomization
energies,49 where LYP produces noticeably better results.
Before we look in detail at the correlation potentials and

energy densities, we first reconsider the exchange case, as
detailed in Figures 1 and 2. In particular, we note the failure
of the Becke exchange GGA to reproduce the asymptotic
behavior of the exchange potential asr f ∞, namely-1/r. This
GGA was designed to yield a correct energy density, but not
the virial energy density discussed here. If the functional had
been designed to yield the correct potential, then it would also
have gotten the correct virial energy density.34 For all figures,
the PW91 potentials (not shown) are almost identical to the PBE
potentials, except for the small oscillations which were removed
in the derivation of PBE.9 However, in the energy densities,
these oscillations lead to wild peaks and valleys, whose net effect
on the area under the curve is negligible.
Next we turn to correlation. In Figure 3, we plot both the

exact correlation potential and the functional approximations
to it. We now include also the Lee-Yang-Parr correlation
potential (LYP).6 We find that none of the functionals produce
potentials which look like the exact one, which becomes positive
at larger and tends to a finite negative value asr f 0. The
LSD curve is everywhere negative. The GGA curves all have
positive divergences atr ) 0, and become negative for most
values ofr. It has even been pointed out that the GGA potentials
would look better upside down.15 We return to this point below.
To contruct the hypercorrelated potential, we extract the

coupling-constant dependence of the potential via eq 25. Any
program to find the potential within a given functional ap-
proximation can be modified to scale the density and calculate
υc

λ. (A little care must be taken in the strongly correlated limit
(λ f ∞) where, e.g.,υc

LSD,λ ∼ O(λ3/2).) Integration of this
potential as a function ofλ according to eq 31 then yieldsυ̃xc.
Unfortunately, we do not plot an exact curve here, as the
λ-dependence of the correlation potential has not yet been
calculated. While exact correlation potentials can be found from
the exact density for any finite system,21,50-54,15,55,22calculation
of the exactλ-dependence is only now becoming practical.32

In Figure 4, we plot the hypercorrelated potentials and note
the similarities to Figure 3. The effect of hypercorrelation is
clear. Many of the features visible in the curves become more
pronounced. Interestingly, the PBE and LYP curves become
more similar.
From the curves in Figure 4, we construct the corresponding

radial virial energy densities,-4πr3F(r)(dυ̃c/dr), and plot them
in Figure 5. The net area between these curves and the axis
yields the correlation energy, within a given functional ap-
proximation. In principle, we should use the self-consistent
densities calculated within each functional approximation in
order for the virial theorem to apply. In practice, we have used
the exact density everywhere, and have noticed no difference
between, for example,Ec and the virial of the hypercorrelated
potential, to the number of digits quoted in Table 1.
First note the greater structure of the GGA curves relative to

Tc )∫ d3r tc(r )
) -∫ d3r r(r )‚∇(υc - υ̃c)(r ) (33)

Exc + Tc ) -∫ d3r ∑
σ)R,â

[Fσ(r )r ‚∇υxc,σ(r )] (34)

Figure 3. Correlation potential for the He atom (atomic units).

Figure 4. Hypercorrelated potential,υ̃c of eq 20, for the He atom
(atomic units).

TABLE 1: Energy Components in hartrees for Several
Atoms, Evaluated on Exact Densities15,18

energy exact LSD PW91 PBE BLYP

He
Ex -1.025 -0.883 -1.016 -1.013 -1.025
Ec -0.042 -0.112 -0.046 -0.042 -0.044
Tc 0.037 0.068 0.038 0.038 0.034
Ec + Tc -0.005 -0.044 -0.008 -0.004 -0.010

Be
Ex -2.674 -2.321 -2.654 -2.645 -2.667
Ec -0.096 -0.225 -0.095 -0.086 -0.096
Tc 0.073 0.139 0.074 0.072 0.062
Ec + Tc -0.023 -0.086 -0.021 -0.014 -0.034

Ne
Ex -12.085 -11.021 -12.102 -12.054 -12.125
Ec -0.393 -0.742 -0.381 -0.350 -0.383
Tc 0.328 0.495 0.312 0.305 0.285
Ec + Tc -0.065 -0.247 -0.069 -0.044 -0.099
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that of LSD. Each of the GGA correlation potentials contains
at least one extremum at a finite value ofr, in common with
the exact curve. This implies a zero in the corresponding energy
density and so a change in sign of that density. There is
therefore a large cancelation of errors within the correlation
energy integral for the GGAs. Presumably, the exact curve
shares this feature (for further evidence, see below). But the
LSD correlation potential is monotonic, so that the LSD energy
density has no cancelation of errors. This is another view of
the characteristic LSD overestimate of the correlation energy.
We can derive a simple expression for the virial exchange-

correlation energy density in the special case of the local
approximation. If we write

where exc
unif(n) is the accurately known24,56,57 exchange-cor-

relation energy density of a uniform gas. Taking the functional
derivative, we find

The virial energy density is given by eq 19. Using eq 25 to
rewrite it in terms of the scaled density, we find

Writing ñ ) n/λ3, we find

This simple result is only true for a local functional. The LSD
virial energy density depends on both the local density and its
gradient. We also used it as a check on ourλ-integrations,
calculating the LSD potential from either eq 20 or eq 38.
Figures 4 and 5 suffer noticeably from the lack of an exact

curve to compare the density functional approximations with.
This is because, although our definition of the virial correlation
energy density is uniquely determined by the correlation energy
functional, one needs to know that functional different coupling
constants, or equivalently, for scaled densities. A traditional
wavefunction calculation only producesΨλ)1. Thus we cannot
calculate the exact curve to make the comparison with. Until
recently, the fullλ-dependence was known only for the uniform
gas. Now theλ-dependence of the exchange-correlation energy

for the He and Be series has been accurately calculated using
a standard configuration interaction program,58 for the Hooke’s
atom using approximate density scaling, and quantum Monte
Carlo calculations have been performed on Si and sinusoidally
varying potentials.32

However, we can avoid this difficulty by returning to eq 5.
Here we have a correlation virial energy density whichcanbe
found fromΨλ)1, but integrates up toEc + Tc, rather thanEc
itself. Since this quantity is much less accurately predicted by
density functionals, this produces a more stringent test than the
virial for Ec. In Figure 6, we plot the radial energy density for
the exact curve and the approximate ones. The transformation
from Figure 5 to Figure 6 is similar to that from Figure 3 to
Figure 4 in reverse. The strength of the features is weakened.
Most importantly, the exact and GGA curves have almost perfect
cancelation between their positive and negative contributions,
yielding very similar energies. But, just as in the case for the
potential, the GGA energy densities differ markedly from the
exact ones point-by-point.
Again we see the resolution of the paradox of the apparently

worse GGA potential curve, but better GGA energy. The small
oscillation in the PBE correlation potential curve aroundr )
1.0 in Figure 3 leads to a change in sign of its energy density,
producing a large cancelation of errors in the integral. The
smoother, better looking LSD potential has no such feature.
SinceEc + Tc is a very small number, this cancellation is vital
and is included in GGA, but missed by LSD, leading to an error
which is almost 10 times larger (see Table 1).
Finally, we plot the correlation contribution to the kinetic

energy density of eq 33 in Figure 7. We see the significant
difference between the overestimate of LDA due its monoto-
nicity, just as forEc in Figure 5. However, we also see a large

Figure 5. Radial virial correlation energy density, extracted from the
hypercorrelated potential, for the He atom (atomic units).

Exc
LSD[F] )∫ d3r excunif(F(r )) (35)

υxc
LSD(r ) ) d(exc

unif)/dF (36)

exc
LSD ) -F(r )r ‚∇∫1∞ dλ

λ
υxc
LSD(F(r )/λ3) (37)

exc
LSD ) -1/3 F(r )r ‚∇∫0F(r ) dF̃

F̃
υxc
LSD(F̃)

) -1/3(r ‚∇F)υxc(F) (38)

Figure 6. Radial virial correlation plus kinetic-correlation energy
density, extracted from the correlation potential, for the He atom (atomic
units).

Figure 7. Radial virial kinetic-correlation energy density for the He
atom (atomic units).
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difference between the PBE and LYP curves, leading to the
underestimate ofTc by LYP mentioned earlier. These curves
can be compared to Figure 1a of ref 59, but there the exact
tc(r) is defined in terms of the difference in kinetic energy
density of the physical and Kohn-Sham wave functions, and
the approximatetc(r) extracted by scaling the traditional
correlation energy density of eq 3, rather than using the virial
definition of eq 33.

IV. Uniqueness and Application to Molecules

The virial of the hypercorrelated potential yields the exact
exchange-correlation energy, thereby defining an exchange-
correlation energy density which is uniquely determined by the
exchange-correlation energy functional. However, this choice
of energy density is itself by no means unique. A simple way
to see this is to change the origin in eq 19. The exchange-
correlation energy does not change, since

but the corresponding energy density does. To illustrate this,
imagine shifting the origin one atomic unit along thez-axis,
away from the nuclear center. Then, for example, the exchange
energy density of eq 4 changes by an amount

This quantity is plotted for the He atom along thez-axis in
Figure 8. It integrates to zero, but has a pronounced structure
as a function ofr . This will be particularly important when
calculating these energy densities for molecules. If the origin
is chosen on one nucleus, the contribution at another nucleus
will pick up a term similar to that of Figure 8, but which will
be slightly asymmetric, due to the bonding. Thus this contribu-
tion cannot be ignored, as it does not integrate to zero.
This illustrates an important point in the interpretation of the

energy densities defined in this work. It is unclear what physical
significance should be attributed to the value of these energy
densities at a point in the system. They are highly nonfocal
functionals of the density, as evinced by the differences between
the exact curves and the LDA curves. Thus they do not yield
chemical insight into the nature of bond formation27-30 nor are
they close to “local”.31 On the other hand, one can chooseany
origin for the purposes described here (i.e., comparison between
approximate and exact functionals).

V. Conclusions

We have shown how to construct a correlation energy density
which is uniquely determined by the correlation potential (as a

function of coupling constant) and therefore by the correlation
energy functional itself. We find that neither the local density
approximation nor any popular GGA approximate this energy
density point-by-poin.
We can apply this study to the question of how well the

ground-state energy can be estimated,giVen the exact density,
without recourse to solving an interacting problem. For the spin-
unpolarized two-electron problem, the answer is thatE can be
deduced exactly. We writeE) ε + E1, whereε is the Kohn-
Sham eigenvalue, deducible from the decay of the density,60

whileE1 is the ground-state energy of the remaining one-electron
ion. More generally, both the exchange and correlation
potentials can be found exactly from the density.61 Thus if one
can deduce the hypercorrelated potential from the correlation
potential, then the problem is solved. We are currently working
on schemes to estimate the hypercorrelated potential. Note that
even an exact solution to this problem does not provide an exact
ground-state energy functional, since use of the virial theorem
renders the energy nonvariational.
This might also be extended to estimating the hypercorrelated

potential from the exchange potential alone, as might be found
in an optimized effective potential calculation (OEP) using, for
example, the KLI approximation.62 This suggests the possibility
of an exchange-correlation energy density hybrid of exact
exchange with GGA exchange-correlation. Recently, the
hybrid idea, which reduces atomization energy errors by a factor
of 2-3, has been derived in a parameter-free fashion.12-14

Unfortunately, these schemes are all applied to the energy
difference between atoms and molecules, rather than on the
energies themselves, so losing the uniqueness of the definition
of the total energy.63 However, any scheme which mixed energy
densitieson a pointwise basis would not suffer from such a
defect, by construction. This was the original motivation behind
the current work. Unfortunately, since the current functionals
do not produce energy densities similar to the exact quantities,
it is difficult to see how to implement such a hybrid scheme,
which would be of the form

wherea(r ) would be determined by some nonempirical recipe.
In the case of atomization energies, the errors in the GGA
functionals are of definite sign and nature49 and can be
understood in terms of general chemical arguments.63 Thus they
can be repaired by hybrid recipes which account for them.12,14

For the energy density, we are still searching for an understand-
ing of these errors,64 without which it is unclear how best to
proceed.
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(59) Süle, P.Chem. Phys. Lett.1996, 259, 69.
(60) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr.Phys. ReV.

Lett. 1982, 49, 1691.
(61) Filippi, C.; Umrigar, C.; Gonze, X.Phys. ReV. A 1996, 54, 4810.
(62) Construction and application of an accurate local spin-polarized

Kohn-Sham potential with integer discontinuity: Exchange-only theory,
Krieger, J. B.; Li, Y.; Iafrate, G. J.,Phys. ReV. A 1992, 45, 101.

(63) Why the generalized gradient approximation works and how to go
beyond it, Burke, K.; Perdew, J. P.; Ernzerhof, M.,Int. J. Quantum Chem.
1997, 61, 287.

(64) Exchange-correlation energy density in density functional theory,
Burke, K.; Cruz, F. G.; Lam, K. C.J. Chem. Phys.1998, Accepted for
publication.

Exchange-Correlation Energy Density J. Phys. Chem. A, Vol. 102, No. 25, 19984917


